3.15.81 \(\int \frac {(A+B x) \sqrt {d+e x}}{\sqrt {a+c x^2}} \, dx\) [1481]

3.15.81.1 Optimal result
3.15.81.2 Mathematica [C] (verified)
3.15.81.3 Rubi [A] (verified)
3.15.81.4 Maple [B] (verified)
3.15.81.5 Fricas [C] (verification not implemented)
3.15.81.6 Sympy [F]
3.15.81.7 Maxima [F]
3.15.81.8 Giac [F]
3.15.81.9 Mupad [F(-1)]

3.15.81.1 Optimal result

Integrand size = 26, antiderivative size = 331 \[ \int \frac {(A+B x) \sqrt {d+e x}}{\sqrt {a+c x^2}} \, dx=\frac {2 B \sqrt {d+e x} \sqrt {a+c x^2}}{3 c}-\frac {2 \sqrt {-a} (B d+3 A e) \sqrt {d+e x} \sqrt {1+\frac {c x^2}{a}} E\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{3 \sqrt {c} e \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {a+c x^2}}+\frac {2 \sqrt {-a} B \left (c d^2+a e^2\right ) \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {1+\frac {c x^2}{a}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right ),-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{3 c^{3/2} e \sqrt {d+e x} \sqrt {a+c x^2}} \]

output
2/3*B*(e*x+d)^(1/2)*(c*x^2+a)^(1/2)/c-2/3*(3*A*e+B*d)*EllipticE(1/2*(1-x*c 
^(1/2)/(-a)^(1/2))^(1/2)*2^(1/2),(-2*a*e/(-a*e+d*(-a)^(1/2)*c^(1/2)))^(1/2 
))*(-a)^(1/2)*(e*x+d)^(1/2)*(1+c*x^2/a)^(1/2)/e/c^(1/2)/(c*x^2+a)^(1/2)/(( 
e*x+d)*c^(1/2)/(e*(-a)^(1/2)+d*c^(1/2)))^(1/2)+2/3*B*(a*e^2+c*d^2)*Ellipti 
cF(1/2*(1-x*c^(1/2)/(-a)^(1/2))^(1/2)*2^(1/2),(-2*a*e/(-a*e+d*(-a)^(1/2)*c 
^(1/2)))^(1/2))*(-a)^(1/2)*(1+c*x^2/a)^(1/2)*((e*x+d)*c^(1/2)/(e*(-a)^(1/2 
)+d*c^(1/2)))^(1/2)/c^(3/2)/e/(e*x+d)^(1/2)/(c*x^2+a)^(1/2)
 
3.15.81.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 23.72 (sec) , antiderivative size = 464, normalized size of antiderivative = 1.40 \[ \int \frac {(A+B x) \sqrt {d+e x}}{\sqrt {a+c x^2}} \, dx=\frac {2 \sqrt {d+e x} \left (B \left (a+c x^2\right )+\frac {(B d+3 A e) \left (a+c x^2\right )}{d+e x}+\frac {i c (B d+3 A e) \sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}} \sqrt {\frac {e \left (\frac {i \sqrt {a}}{\sqrt {c}}+x\right )}{d+e x}} \sqrt {-\frac {\frac {i \sqrt {a} e}{\sqrt {c}}-e x}{d+e x}} \sqrt {d+e x} E\left (i \text {arcsinh}\left (\frac {\sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}}}{\sqrt {d+e x}}\right )|\frac {\sqrt {c} d-i \sqrt {a} e}{\sqrt {c} d+i \sqrt {a} e}\right )}{e^2}+\frac {i \left (i \sqrt {a} B+3 A \sqrt {c}\right ) \left (\sqrt {c} d+i \sqrt {a} e\right ) \sqrt {\frac {e \left (\frac {i \sqrt {a}}{\sqrt {c}}+x\right )}{d+e x}} \sqrt {-\frac {\frac {i \sqrt {a} e}{\sqrt {c}}-e x}{d+e x}} \sqrt {d+e x} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}}}{\sqrt {d+e x}}\right ),\frac {\sqrt {c} d-i \sqrt {a} e}{\sqrt {c} d+i \sqrt {a} e}\right )}{e \sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}}}\right )}{3 c \sqrt {a+c x^2}} \]

input
Integrate[((A + B*x)*Sqrt[d + e*x])/Sqrt[a + c*x^2],x]
 
output
(2*Sqrt[d + e*x]*(B*(a + c*x^2) + ((B*d + 3*A*e)*(a + c*x^2))/(d + e*x) + 
(I*c*(B*d + 3*A*e)*Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]*Sqrt[(e*((I*Sqrt[a])/S 
qrt[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*S 
qrt[d + e*x]*EllipticE[I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + 
 e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)])/e^2 + (I*(I* 
Sqrt[a]*B + 3*A*Sqrt[c])*(Sqrt[c]*d + I*Sqrt[a]*e)*Sqrt[(e*((I*Sqrt[a])/Sq 
rt[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*Sq 
rt[d + e*x]*EllipticF[I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + 
e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)])/(e*Sqrt[-d - 
(I*Sqrt[a]*e)/Sqrt[c]])))/(3*c*Sqrt[a + c*x^2])
 
3.15.81.3 Rubi [A] (verified)

Time = 0.80 (sec) , antiderivative size = 657, normalized size of antiderivative = 1.98, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.231, Rules used = {687, 27, 599, 1511, 1416, 1509}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(A+B x) \sqrt {d+e x}}{\sqrt {a+c x^2}} \, dx\)

\(\Big \downarrow \) 687

\(\displaystyle \frac {2 \int \frac {3 A c d-a B e+c (B d+3 A e) x}{2 \sqrt {d+e x} \sqrt {c x^2+a}}dx}{3 c}+\frac {2 B \sqrt {a+c x^2} \sqrt {d+e x}}{3 c}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {3 A c d-a B e+c (B d+3 A e) x}{\sqrt {d+e x} \sqrt {c x^2+a}}dx}{3 c}+\frac {2 B \sqrt {a+c x^2} \sqrt {d+e x}}{3 c}\)

\(\Big \downarrow \) 599

\(\displaystyle \frac {2 B \sqrt {a+c x^2} \sqrt {d+e x}}{3 c}-\frac {2 \int \frac {B \left (c d^2+a e^2\right )-c (B d+3 A e) (d+e x)}{\sqrt {\frac {c d^2}{e^2}-\frac {2 c (d+e x) d}{e^2}+\frac {c (d+e x)^2}{e^2}+a}}d\sqrt {d+e x}}{3 c e^2}\)

\(\Big \downarrow \) 1511

\(\displaystyle \frac {2 B \sqrt {a+c x^2} \sqrt {d+e x}}{3 c}-\frac {2 \left (\sqrt {c} \sqrt {a e^2+c d^2} (3 A e+B d) \int \frac {1-\frac {\sqrt {c} (d+e x)}{\sqrt {c d^2+a e^2}}}{\sqrt {\frac {c d^2}{e^2}-\frac {2 c (d+e x) d}{e^2}+\frac {c (d+e x)^2}{e^2}+a}}d\sqrt {d+e x}-\sqrt {a e^2+c d^2} \left (\sqrt {c} (3 A e+B d)-B \sqrt {a e^2+c d^2}\right ) \int \frac {1}{\sqrt {\frac {c d^2}{e^2}-\frac {2 c (d+e x) d}{e^2}+\frac {c (d+e x)^2}{e^2}+a}}d\sqrt {d+e x}\right )}{3 c e^2}\)

\(\Big \downarrow \) 1416

\(\displaystyle \frac {2 B \sqrt {a+c x^2} \sqrt {d+e x}}{3 c}-\frac {2 \left (\sqrt {c} \sqrt {a e^2+c d^2} (3 A e+B d) \int \frac {1-\frac {\sqrt {c} (d+e x)}{\sqrt {c d^2+a e^2}}}{\sqrt {\frac {c d^2}{e^2}-\frac {2 c (d+e x) d}{e^2}+\frac {c (d+e x)^2}{e^2}+a}}d\sqrt {d+e x}-\frac {\left (a e^2+c d^2\right )^{3/4} \left (\frac {\sqrt {c} (d+e x)}{\sqrt {a e^2+c d^2}}+1\right ) \sqrt {\frac {a+\frac {c d^2}{e^2}-\frac {2 c d (d+e x)}{e^2}+\frac {c (d+e x)^2}{e^2}}{\left (a+\frac {c d^2}{e^2}\right ) \left (\frac {\sqrt {c} (d+e x)}{\sqrt {a e^2+c d^2}}+1\right )^2}} \left (\sqrt {c} (3 A e+B d)-B \sqrt {a e^2+c d^2}\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {d+e x}}{\sqrt [4]{c d^2+a e^2}}\right ),\frac {1}{2} \left (\frac {\sqrt {c} d}{\sqrt {c d^2+a e^2}}+1\right )\right )}{2 \sqrt [4]{c} \sqrt {a+\frac {c d^2}{e^2}-\frac {2 c d (d+e x)}{e^2}+\frac {c (d+e x)^2}{e^2}}}\right )}{3 c e^2}\)

\(\Big \downarrow \) 1509

\(\displaystyle \frac {2 B \sqrt {a+c x^2} \sqrt {d+e x}}{3 c}-\frac {2 \left (\sqrt {c} \sqrt {a e^2+c d^2} (3 A e+B d) \left (\frac {\sqrt [4]{a e^2+c d^2} \left (\frac {\sqrt {c} (d+e x)}{\sqrt {a e^2+c d^2}}+1\right ) \sqrt {\frac {a+\frac {c d^2}{e^2}-\frac {2 c d (d+e x)}{e^2}+\frac {c (d+e x)^2}{e^2}}{\left (a+\frac {c d^2}{e^2}\right ) \left (\frac {\sqrt {c} (d+e x)}{\sqrt {a e^2+c d^2}}+1\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {d+e x}}{\sqrt [4]{c d^2+a e^2}}\right )|\frac {1}{2} \left (\frac {\sqrt {c} d}{\sqrt {c d^2+a e^2}}+1\right )\right )}{\sqrt [4]{c} \sqrt {a+\frac {c d^2}{e^2}-\frac {2 c d (d+e x)}{e^2}+\frac {c (d+e x)^2}{e^2}}}-\frac {\sqrt {d+e x} \sqrt {a+\frac {c d^2}{e^2}-\frac {2 c d (d+e x)}{e^2}+\frac {c (d+e x)^2}{e^2}}}{\left (a+\frac {c d^2}{e^2}\right ) \left (\frac {\sqrt {c} (d+e x)}{\sqrt {a e^2+c d^2}}+1\right )}\right )-\frac {\left (a e^2+c d^2\right )^{3/4} \left (\frac {\sqrt {c} (d+e x)}{\sqrt {a e^2+c d^2}}+1\right ) \sqrt {\frac {a+\frac {c d^2}{e^2}-\frac {2 c d (d+e x)}{e^2}+\frac {c (d+e x)^2}{e^2}}{\left (a+\frac {c d^2}{e^2}\right ) \left (\frac {\sqrt {c} (d+e x)}{\sqrt {a e^2+c d^2}}+1\right )^2}} \left (\sqrt {c} (3 A e+B d)-B \sqrt {a e^2+c d^2}\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {d+e x}}{\sqrt [4]{c d^2+a e^2}}\right ),\frac {1}{2} \left (\frac {\sqrt {c} d}{\sqrt {c d^2+a e^2}}+1\right )\right )}{2 \sqrt [4]{c} \sqrt {a+\frac {c d^2}{e^2}-\frac {2 c d (d+e x)}{e^2}+\frac {c (d+e x)^2}{e^2}}}\right )}{3 c e^2}\)

input
Int[((A + B*x)*Sqrt[d + e*x])/Sqrt[a + c*x^2],x]
 
output
(2*B*Sqrt[d + e*x]*Sqrt[a + c*x^2])/(3*c) - (2*(Sqrt[c]*(B*d + 3*A*e)*Sqrt 
[c*d^2 + a*e^2]*(-((Sqrt[d + e*x]*Sqrt[a + (c*d^2)/e^2 - (2*c*d*(d + e*x)) 
/e^2 + (c*(d + e*x)^2)/e^2])/((a + (c*d^2)/e^2)*(1 + (Sqrt[c]*(d + e*x))/S 
qrt[c*d^2 + a*e^2]))) + ((c*d^2 + a*e^2)^(1/4)*(1 + (Sqrt[c]*(d + e*x))/Sq 
rt[c*d^2 + a*e^2])*Sqrt[(a + (c*d^2)/e^2 - (2*c*d*(d + e*x))/e^2 + (c*(d + 
 e*x)^2)/e^2)/((a + (c*d^2)/e^2)*(1 + (Sqrt[c]*(d + e*x))/Sqrt[c*d^2 + a*e 
^2])^2)]*EllipticE[2*ArcTan[(c^(1/4)*Sqrt[d + e*x])/(c*d^2 + a*e^2)^(1/4)] 
, (1 + (Sqrt[c]*d)/Sqrt[c*d^2 + a*e^2])/2])/(c^(1/4)*Sqrt[a + (c*d^2)/e^2 
- (2*c*d*(d + e*x))/e^2 + (c*(d + e*x)^2)/e^2])) - ((c*d^2 + a*e^2)^(3/4)* 
(Sqrt[c]*(B*d + 3*A*e) - B*Sqrt[c*d^2 + a*e^2])*(1 + (Sqrt[c]*(d + e*x))/S 
qrt[c*d^2 + a*e^2])*Sqrt[(a + (c*d^2)/e^2 - (2*c*d*(d + e*x))/e^2 + (c*(d 
+ e*x)^2)/e^2)/((a + (c*d^2)/e^2)*(1 + (Sqrt[c]*(d + e*x))/Sqrt[c*d^2 + a* 
e^2])^2)]*EllipticF[2*ArcTan[(c^(1/4)*Sqrt[d + e*x])/(c*d^2 + a*e^2)^(1/4) 
], (1 + (Sqrt[c]*d)/Sqrt[c*d^2 + a*e^2])/2])/(2*c^(1/4)*Sqrt[a + (c*d^2)/e 
^2 - (2*c*d*(d + e*x))/e^2 + (c*(d + e*x)^2)/e^2])))/(3*c*e^2)
 

3.15.81.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 599
Int[((A_.) + (B_.)*(x_))/(Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(a_) + (b_.)*(x_)^2] 
), x_Symbol] :> Simp[-2/d^2   Subst[Int[(B*c - A*d - B*x^2)/Sqrt[(b*c^2 + a 
*d^2)/d^2 - 2*b*c*(x^2/d^2) + b*(x^4/d^2)], x], x, Sqrt[c + d*x]], x] /; Fr 
eeQ[{a, b, c, d, A, B}, x] && PosQ[b/a]
 

rule 687
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p 
_.), x_Symbol] :> Simp[g*(d + e*x)^m*((a + c*x^2)^(p + 1)/(c*(m + 2*p + 2)) 
), x] + Simp[1/(c*(m + 2*p + 2))   Int[(d + e*x)^(m - 1)*(a + c*x^2)^p*Simp 
[c*d*f*(m + 2*p + 2) - a*e*g*m + c*(e*f*(m + 2*p + 2) + d*g*m)*x, x], x], x 
] /; FreeQ[{a, c, d, e, f, g, p}, x] && GtQ[m, 0] && NeQ[m + 2*p + 2, 0] && 
 (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p]) &&  !(IGtQ[m, 0] && Eq 
Q[f, 0])
 

rule 1416
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c 
/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/ 
(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c)) 
], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]
 

rule 1509
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q 
^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2* 
x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2 
/(4*c))], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 
- 4*a*c, 0] && PosQ[c/a]
 

rule 1511
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 2]}, Simp[(e + d*q)/q   Int[1/Sqrt[a + b*x^2 + c*x^ 
4], x], x] - Simp[e/q   Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x] /; 
NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && Pos 
Q[c/a]
 
3.15.81.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(601\) vs. \(2(265)=530\).

Time = 0.73 (sec) , antiderivative size = 602, normalized size of antiderivative = 1.82

method result size
elliptic \(\frac {\sqrt {\left (e x +d \right ) \left (c \,x^{2}+a \right )}\, \left (\frac {2 B \sqrt {c e \,x^{3}+c d \,x^{2}+a e x +a d}}{3 c}+\frac {2 \left (d A -\frac {B a e}{3 c}\right ) \left (\frac {d}{e}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}}\, F\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\right )}{\sqrt {c e \,x^{3}+c d \,x^{2}+a e x +a d}}+\frac {2 \left (A e +\frac {B d}{3}\right ) \left (\frac {d}{e}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}}\, \left (\left (-\frac {d}{e}-\frac {\sqrt {-a c}}{c}\right ) E\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\right )+\frac {\sqrt {-a c}\, F\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\right )}{c}\right )}{\sqrt {c e \,x^{3}+c d \,x^{2}+a e x +a d}}\right )}{\sqrt {e x +d}\, \sqrt {c \,x^{2}+a}}\) \(602\)
risch \(\frac {2 B \sqrt {e x +d}\, \sqrt {c \,x^{2}+a}}{3 c}+\frac {\left (\frac {6 A c d \left (\frac {d}{e}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}}\, F\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\right )}{\sqrt {c e \,x^{3}+c d \,x^{2}+a e x +a d}}-\frac {2 B a e \left (\frac {d}{e}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}}\, F\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\right )}{\sqrt {c e \,x^{3}+c d \,x^{2}+a e x +a d}}+\frac {2 \left (3 A c e +B c d \right ) \left (\frac {d}{e}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}}\, \left (\left (-\frac {d}{e}-\frac {\sqrt {-a c}}{c}\right ) E\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\right )+\frac {\sqrt {-a c}\, F\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\right )}{c}\right )}{\sqrt {c e \,x^{3}+c d \,x^{2}+a e x +a d}}\right ) \sqrt {\left (e x +d \right ) \left (c \,x^{2}+a \right )}}{3 c \sqrt {e x +d}\, \sqrt {c \,x^{2}+a}}\) \(807\)
default \(\text {Expression too large to display}\) \(1286\)

input
int((B*x+A)*(e*x+d)^(1/2)/(c*x^2+a)^(1/2),x,method=_RETURNVERBOSE)
 
output
((e*x+d)*(c*x^2+a))^(1/2)/(e*x+d)^(1/2)/(c*x^2+a)^(1/2)*(2/3*B/c*(c*e*x^3+ 
c*d*x^2+a*e*x+a*d)^(1/2)+2*(d*A-1/3*B/c*a*e)*(d/e-(-a*c)^(1/2)/c)*((x+d/e) 
/(d/e-(-a*c)^(1/2)/c))^(1/2)*((x-(-a*c)^(1/2)/c)/(-d/e-(-a*c)^(1/2)/c))^(1 
/2)*((x+(-a*c)^(1/2)/c)/(-d/e+(-a*c)^(1/2)/c))^(1/2)/(c*e*x^3+c*d*x^2+a*e* 
x+a*d)^(1/2)*EllipticF(((x+d/e)/(d/e-(-a*c)^(1/2)/c))^(1/2),((-d/e+(-a*c)^ 
(1/2)/c)/(-d/e-(-a*c)^(1/2)/c))^(1/2))+2*(A*e+1/3*B*d)*(d/e-(-a*c)^(1/2)/c 
)*((x+d/e)/(d/e-(-a*c)^(1/2)/c))^(1/2)*((x-(-a*c)^(1/2)/c)/(-d/e-(-a*c)^(1 
/2)/c))^(1/2)*((x+(-a*c)^(1/2)/c)/(-d/e+(-a*c)^(1/2)/c))^(1/2)/(c*e*x^3+c* 
d*x^2+a*e*x+a*d)^(1/2)*((-d/e-(-a*c)^(1/2)/c)*EllipticE(((x+d/e)/(d/e-(-a* 
c)^(1/2)/c))^(1/2),((-d/e+(-a*c)^(1/2)/c)/(-d/e-(-a*c)^(1/2)/c))^(1/2))+(- 
a*c)^(1/2)/c*EllipticF(((x+d/e)/(d/e-(-a*c)^(1/2)/c))^(1/2),((-d/e+(-a*c)^ 
(1/2)/c)/(-d/e-(-a*c)^(1/2)/c))^(1/2))))
 
3.15.81.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 227, normalized size of antiderivative = 0.69 \[ \int \frac {(A+B x) \sqrt {d+e x}}{\sqrt {a+c x^2}} \, dx=\frac {2 \, {\left (3 \, \sqrt {c x^{2} + a} \sqrt {e x + d} B c e^{2} - {\left (B c d^{2} - 6 \, A c d e + 3 \, B a e^{2}\right )} \sqrt {c e} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c d^{2} - 3 \, a e^{2}\right )}}{3 \, c e^{2}}, -\frac {8 \, {\left (c d^{3} + 9 \, a d e^{2}\right )}}{27 \, c e^{3}}, \frac {3 \, e x + d}{3 \, e}\right ) - 3 \, {\left (B c d e + 3 \, A c e^{2}\right )} \sqrt {c e} {\rm weierstrassZeta}\left (\frac {4 \, {\left (c d^{2} - 3 \, a e^{2}\right )}}{3 \, c e^{2}}, -\frac {8 \, {\left (c d^{3} + 9 \, a d e^{2}\right )}}{27 \, c e^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c d^{2} - 3 \, a e^{2}\right )}}{3 \, c e^{2}}, -\frac {8 \, {\left (c d^{3} + 9 \, a d e^{2}\right )}}{27 \, c e^{3}}, \frac {3 \, e x + d}{3 \, e}\right )\right )\right )}}{9 \, c^{2} e^{2}} \]

input
integrate((B*x+A)*(e*x+d)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="fricas")
 
output
2/9*(3*sqrt(c*x^2 + a)*sqrt(e*x + d)*B*c*e^2 - (B*c*d^2 - 6*A*c*d*e + 3*B* 
a*e^2)*sqrt(c*e)*weierstrassPInverse(4/3*(c*d^2 - 3*a*e^2)/(c*e^2), -8/27* 
(c*d^3 + 9*a*d*e^2)/(c*e^3), 1/3*(3*e*x + d)/e) - 3*(B*c*d*e + 3*A*c*e^2)* 
sqrt(c*e)*weierstrassZeta(4/3*(c*d^2 - 3*a*e^2)/(c*e^2), -8/27*(c*d^3 + 9* 
a*d*e^2)/(c*e^3), weierstrassPInverse(4/3*(c*d^2 - 3*a*e^2)/(c*e^2), -8/27 
*(c*d^3 + 9*a*d*e^2)/(c*e^3), 1/3*(3*e*x + d)/e)))/(c^2*e^2)
 
3.15.81.6 Sympy [F]

\[ \int \frac {(A+B x) \sqrt {d+e x}}{\sqrt {a+c x^2}} \, dx=\int \frac {\left (A + B x\right ) \sqrt {d + e x}}{\sqrt {a + c x^{2}}}\, dx \]

input
integrate((B*x+A)*(e*x+d)**(1/2)/(c*x**2+a)**(1/2),x)
 
output
Integral((A + B*x)*sqrt(d + e*x)/sqrt(a + c*x**2), x)
 
3.15.81.7 Maxima [F]

\[ \int \frac {(A+B x) \sqrt {d+e x}}{\sqrt {a+c x^2}} \, dx=\int { \frac {{\left (B x + A\right )} \sqrt {e x + d}}{\sqrt {c x^{2} + a}} \,d x } \]

input
integrate((B*x+A)*(e*x+d)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="maxima")
 
output
integrate((B*x + A)*sqrt(e*x + d)/sqrt(c*x^2 + a), x)
 
3.15.81.8 Giac [F]

\[ \int \frac {(A+B x) \sqrt {d+e x}}{\sqrt {a+c x^2}} \, dx=\int { \frac {{\left (B x + A\right )} \sqrt {e x + d}}{\sqrt {c x^{2} + a}} \,d x } \]

input
integrate((B*x+A)*(e*x+d)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="giac")
 
output
integrate((B*x + A)*sqrt(e*x + d)/sqrt(c*x^2 + a), x)
 
3.15.81.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(A+B x) \sqrt {d+e x}}{\sqrt {a+c x^2}} \, dx=\int \frac {\left (A+B\,x\right )\,\sqrt {d+e\,x}}{\sqrt {c\,x^2+a}} \,d x \]

input
int(((A + B*x)*(d + e*x)^(1/2))/(a + c*x^2)^(1/2),x)
 
output
int(((A + B*x)*(d + e*x)^(1/2))/(a + c*x^2)^(1/2), x)